Vai al contenuto principale
Coronavirus: aggiornamenti per la comunità universitaria / Coronavirus: updates for UniTo Community
Oggetto:
Oggetto:

Equazioni differenziali

Oggetto:

Differential Equations

Oggetto:

Anno accademico 2022/2023

Codice attività didattica
MFN1421
Docenti
Prof. Paolo Caldiroli (Titolare del corso)
Prof. Elena Cordero (Titolare del corso)
Corso di studio
Laurea Magistrale in Matematica (D.M. 270)
Anno
1° anno, 2° anno
Periodo
Secondo semestre
Tipologia
D.M. 270 TAF D - A scelta dello studente
Crediti/Valenza
6
SSD attività didattica
MAT/05 - analisi matematica
Erogazione
Tradizionale
Lingua
Italiano
Frequenza
Facoltativa
Tipologia esame
Orale
Prerequisiti

Analisi matematica 1, 2 e 3 e Geometria 1 della Laurea triennale.

Mathematical Analysis 1, 2 and 3, and Geometry 1 of the Undergraduate Course.
Mutuato da
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Il corso ha l'obiettivo di fornire agli studenti e alle studentesse un’introduzione alle equazioni alle derivate parziali (in particolare, le equazioni di Laplace, Poisson, calore, onde, trasporto) e una presentazione di alcuni strumenti matematici (teoria di Frobenius-Fuchs, serie di Fourier, trasformata di Fourier, spazi funzionali, distribuzioni) utili per lo studio di tali equazioni e indispensabili per la comprensione di argomenti avanzati della fisica, a partire dalla meccanica quantistica. Gli studenti interessati potranno proseguire un percorso incentrato sulle equazioni differenziali sia approfondendone gli aspetti più propriamente modellistici (Equazioni Differenziali della Fisica Matematica) sia applicandovi gli strumenti propri dell’analisi funzionale per un approccio più avanzato (Analisi Superiore). Infine un tale percorso ideale può essere complementato con l’insegnamento magistrale di Equazioni Differenziali Stocastiche.
The course aims to provide the students with an introduction to partial differential equations (in particular, Laplace, Poisson, heat, wave, transport equations, Fuchsian differential equations) and a presentation of some mathematical tools (Frobenius-Fuchs theory, Fourier series, Fourier transform, functional spaces, distributions) useful for the study of such equations and indispensable for the understanding of advanced topics of physics, starting from quantum mechanics. Interested students will be able to pursue a path focused on differential equations, both deepening the specific modelling aspects (Differential Equations of Mathematical Physics) and applying the tools of functional analysis for a more advanced approach (Advanced Analysis, Variational Methods). Finally such an ideal path can be complemented by the course Stochastic Differential Equations.

Oggetto:

Risultati dell'apprendimento attesi

Conoscenza di alcune equazioni alle derivate parziali (equazioni di Laplace, Poisson, calore, onde, trasporto) e di alcuni metodi classici utili per studiarle. Conoscenza del metodo di Frobenius-Fuchs, dei fondamenti della teoria delle serie di Fourier, trasformata di Fourier, spazi funzionali e distribuzioni. Capacità di applicare gli strumenti matematici suddetti ad alcuni problemi specifici.
Knowledge of some partial differential equations of physical interest (Laplace, Poisson, heat, wave, transport equations) and of some classical methods useful to their study. Knowledge of Frobenius-Fuchs method and of basics on Fourier series, Fourier transform, functional spaces and distributions. Ability to apply the above mentioned mathematical tools to some specific problems.

Oggetto:

Programma

Classificazione delle equazioni alle derivate parziali del primo e del secondo ordine.  Il metodo delle caratteristiche e il metodo di Lagrange per le equazioni quasilineari del prim'ordine. Equazione delle onde 1-dim: problema di Cauchy e formula di d'Alembert. Equazione del calore 1-dim: separazione delle variabili, metodo dell'energia, unicità. Equazioni ellittiche: proprietà fondamentali, principio del massimo, formula di Poisson, funzioni di Green e rappresentazioni integrali per l'equazione di Poisson. Problema agli autovalori per l'equazione di Laplace; metodo di Frobenius-Fuchs. Funzioni trigonometriche e serie di Fourier, con applicazione al problema dell'estensione armonica sul disco. Spazio L1. Trasformata di Fourier: definizione, proprietà fondamentali, applicazioni alle equazioni differenziali. Spazio L2, operatori autoaggiunti, basi hilbertiane in L2. Trasformata di Fourier in L2. Spazio di Schwartz. La delta di Dirac e cenni sulle distribuzioni.
First order and second order PDE's (classification). The method of characteristics and the Lagrange method for quasilinear first order PDE's. The one-dimensional wave equation: the Cauchy problem and d’Alembert’s formula. The one-dimensional heat equation: separation of variable, the energy methods, uniqueness. Elliptic equations: basic properties, the maximum principle, Poisson's formula, Green’s functions and integral representations for the Poisson equation. The eigenvalue problem for the Laplace equation; the Frobenius-Fuchs method. Trigonometric functions and Fourier series. Application to the problem of the harmonic extension on the disc. The L1 space. Fourier transform: definition, main properties, applications to differential equations. The L2 space, self-adjoint operators, Hilbertian basis in L2. The Fourier transform in L2. The Schwartz space. The Dirac delta and a concise introduction on distributions.

Oggetto:

Modalità di insegnamento

L'insegnamento consiste di 48 ore di didattica frontale, suddivise in lezioni della durata, di norma, di 2 ore ciascuna, in base al calendario accademico.

Il corso si svolgerà in presenza salvo eccezioni in accordo con le disposizioni di ateneo.

La frequenza è facoltativa ma consigliata.

 

The course consists of 48 hours of lectures. Each lecture is of 2 hours, normally, according to the academic calendar.

The course will take place in presence, except for exceptions, in accordance with the provisions of the University.

Attendance is recommended but not compulsory.

Oggetto:

Modalità di verifica dell'apprendimento

Le prove d'esame saranno effettuate in presenza salvo eccezioni in accordo con le disposizioni di ateneo.

L’esame è una prova orale consistente nell’esposizione di argomenti richiesti dai docenti tra quelli elencati nel programma. È possibile sostenere l'esame in inglese. Il voto è in trentesimi. 

The exams will take place exclusively in presence, except for exceptions, in accordance with the provisions of the University.

The exam is an oral test, in which the candidate is asked to present some topic chosen by the teachers among those ones listed in the program. It is possible to sit the examination in English. The score is expressed out of 30. 

Testi consigliati e bibliografia



Oggetto:
Libro
Titolo:  
An Introduction to Partial Differential Equations
Anno pubblicazione:  
2005
Editore:  
Cambridge University Press
Autore:  
Y. Pinchover and J. Rubinstein
ISBN  
Obbligatorio:  
No


Oggetto:
Libro
Titolo:  
Partial differential equations in action. From modelling to theory. Third edition
Anno pubblicazione:  
2016
Editore:  
Springer
Autore:  
S. Salsa
ISBN  
Obbligatorio:  
No


Oggetto:
Libro
Titolo:  
Partial differential equations. Second edition.
Anno pubblicazione:  
2010
Editore:  
American Mathematical Society, Providence, RI
Autore:  
L. C. Evans
ISBN  
Obbligatorio:  
No
Oggetto:

  • Dispense (a cura del docente).
  • F. John, Partial Differential Equations. Springer (1978)

  • Lecture Notes (by the lecturer).
  • F. John, Partial Differential Equations. Springer (1978)


Oggetto:

Orario lezioniV

Registrazione
  • Aperta
    Oggetto:
    Ultimo aggiornamento: 14/09/2022 10:27

    Non cliccare qui!