Oggetto:
Oggetto:

Geometria Superiore

Oggetto:

ADVANCED GEOMETRY

Oggetto:

Anno accademico 2025/2026

Codice attività didattica
MAT0195
Docenti
Cinzia Casagrande (Titolare)
Alberto Albano (Titolare)
Tommaso Pacini (Titolare)
Corso di studio
Laurea Magistrale in Matematica (D.M. 270)
Anno
1° anno, 2° anno
Periodo
Secondo semestre
Tipologia
D.M. 270 TAF B - Caratterizzante
Crediti/Valenza
6
SSD attività didattica
MAT/03 - geometria
Erogazione
Tradizionale
Lingua
Italiano
Frequenza
Facoltativa
Tipologia esame
Orale
Prerequisiti
Conoscenza di:
- i concetti di varietà differenziabile, fibrato tangente, forme differenziali e varietà algebrica.
- proprietà delle funzioni olomorfe di una variabile complessa.
- (preferibilmente) rivestimenti topologici.
Chi ha seguito gli insegnamenti di Analisi 4, Istituzioni di Geometria e Topologia Algebrica (o Geometria 4) è in possesso di questi prerequisiti.
Knowledge of:
- the concepts of differentiable manifold, tangent bundle, differential form and algebraic variety.
- properties of holomorphic functions of one complex variable;
- (preferably) topological coverings.
Students who have taken the classes of "Analisi 4", "Istituzioni di Geometria" and "Topologia Algebrica" (or "Geometria 4") already have these prerequisites.
Propedeutico a
Insegnamento utile da seguire in parallelo agli altri corsi avanzati di geometria.
The course is useful in parallel with the other advanced courses in geometry.
Oggetto:

Sommario insegnamento

Oggetto:

Avvisi

Informazioni per studenti con DSA o Disabilità: servizi di Ateneo e supporto per sostenere gli esami
Oggetto:

Obiettivi formativi

L'insegnamento si propone di fornire alle/agli studenti alcune tecniche classiche e moderne per lo studio di varietà reali e complesse. La padronanza di tali argomenti è importante per chi ha intenzione di intraprendere un percorso di avvio alla ricerca, in particolare nell'ambito della geometria differenziale e della geometria algebrica.

Coerentemente con gli obiettivi formativi del Corso di Studio, l'insegnamento intende contribuire a sviluppare negli/nelle studenti capacità di astrazione e ragionamento, una flessibilità mentale utile ad affrontare lo studio di problemi complessi, favorire il lavoro di gruppo e l'approfondimento personale, primo stadio per il raggiungimento di autonomia nell'affrontare nuove problematiche.

Aim of the course is to give students the knowledge of some classical and modern techniques in the study of real and complex manifolds. These techniques are essential tools for anyone who wants to pursue a career in academic research, especially in the fields of differential geometry and algebraic geometry.

This teaching aims at helping students develop abstraction and reasoning skills and a mental flexibility useful in studying complex problems. It also aims at encouraging both teamwork and personal study, necessary for achieving autonomy in tackling new problems.

Oggetto:

Risultati dell'apprendimento attesi

Al termine dell’insegnamento la/lo studente dovrà conoscere:

- Coomologia di de Rham.

- Teoria dei Fasci.

- Superfici di Riemann.

The students will have learned:

- de Rham cohomology.

- Sheaf theory.

- Riemann surfaces.

Oggetto:

Programma

1. Coomologia di de Rham.

2. Fasci.

3. Superfici di Riemann.

1. De Rham cohomology.

2. Sheaves.

3. Riemann surfaces.

Oggetto:

Modalità di insegnamento

L'insegnamento è svolto nel secondo semestre e consiste in 48 ore (6 CFU) di didattica frontale, articolate in lezioni ed esercitazioni. Durante le lezioni verranno proposti alcuni esercizi da svolgere a casa e, in alcuni casi, le soluzioni verranno successivamente discusse in classe. 
A richiesta l'insegnamento può essere tenuto in inglese. 

The course is taught in the second semester and consists of 48 hours (6 CFU) of classroom teaching, articulated in lectures and exercise sessions. In the course of the lectures, students will be assigned homeworks whose solution will sometimes be discussed in a following lecture.

The course will be taught in English upon request.

Oggetto:

Modalità di verifica dell'apprendimento

Gli esami si svolgono in forma orale. Le domande potranno riguardare tutti gli argomenti ed esercizi trattati nell'insegnamento.

Eventuali studenti stranieri possono sostenere l'esame, a loro scelta, in italiano o inglese.

Il voto d'esame si intende espresso in trentesimi.

The exams are oral exams. The questions will be about the entire program and all exercises.

Foreign students can choose to take the exam in Italian or English.

The exam grade is expressed as a number (highest grade=30/30).

Testi consigliati e bibliografia



Oggetto:
Libro
Titolo:  
Geometria Differenziale
Anno pubblicazione:  
2011
Editore:  
Springer
Autore:  
Marco Abate, Francesca Tovena
ISBN  
Obbligatorio:  
No


Oggetto:
Libro
Titolo:  
Complex Geometry - An Introduction
Anno pubblicazione:  
2005
Editore:  
Springer
Autore:  
Daniel Huybrechts
ISBN  
Obbligatorio:  
No


Oggetto:
Libro
Titolo:  
Algebraic Curves and Riemann Surfaces
Anno pubblicazione:  
1995
Editore:  
American mathematical Society
Autore:  
Rick Miranda
ISBN  
Obbligatorio:  
No


Oggetto:
Libro
Titolo:  
An Introduction to Manifolds
Anno pubblicazione:  
2011
Editore:  
Springer
Autore:  
Loring W. Tu
ISBN  
Obbligatorio:  
No


Oggetto:

Orario lezioniV

Registrazione
  • Aperta
    Oggetto:
    Ultimo aggiornamento: 26/06/2025 14:51

    Location: https://matematicalm.campusnet.unito.it/robots.html
    Non cliccare qui!